Strategies to Modulate Insulin Concentrations

Posted on Leave a comment

Written By Dr. Kris Hiney

Much recent research in the horse industry has centered on fluctuations in insulin concentrations under a variety of conditions and the effects on the health of the horse.  Many horse owners are aware that traditional feeding practices which rely on a larger proportion of concentrate feeding may result in prolonged insulin secretion by the pancreas.  In young horses, it is thought that prolonged elevations in insulin may lead to cartilage abnormalities, promoting epiphysitis and osteochondrosis.  High starch diets are linked to behavioral issues such as more excitable or reactive horses;  and certain typing up disorders such as polysaccharide storage myopathy and recurrent exertional rhabdomylosis. Finally, high concentrate diets can certainly contribute to the development of insulin resistance and laminitis. As a result of this information, many  current horse feeds are now designed to minimize insulin fluctuations in the horse.  These feeds are typically low in traditional cereal grains such as corn and oats, may be higher in fat and fiber, or may be processed differently.   All of these techniques are designed to either minimize or slow the absorption of glucose out of the small intestine, and thus lower the need of the pancreas to secrete insulin to regulate blood glucose.  But what if switching feeds or eliminating concentrate is simply is not enough?  Are there other options available to the horse owner which can potentially help regulate insulin and glucose in their horses?
One of the concerns for owners of insulin resistant horses is the frequent bouts of laminitis which occur if the horse is allowed access to pasture high in fructans.   Owners of these horses need to monitor their horses grazing carefully.  In order to avoid plants with high fructan content owners are advised against allowing access to pasture during the afternoon (when photosynthesis is at its peak rate), the spring, late fall or when grasses are stressed.  Further, warm season grasses offer a lower fructan concentration than cool season species of grasses and make better grazing choices for insulin resistant horses.

But why are fructans such a concern?

One of the theories addressing the laminitis inducing effect of high fructan content in plants is that fructans when consumed by the horse ,create changes in the bacterial population of the hindgut.  They undergo rapid fermentation, can alter pH of the gut and may result in bacterial endotoxin release.  However, this explanation does little to explain why insulin resistant horses in particular are so sensitive to fructans.  It may be that fructans trigger an increase in insulin itself that creates alterations to the vasculature of the hoof and the accompanying painful syndrome.   Insulin, while typically thought of as having a primary role in glucose disposal, has tremendous effects on the vasculature.  Insulin can act as both a vasodilator, or a vasoconstrictor.   Insulin resistance has been repeatedly been shown to cause cardiovascular dysfunction in many other species.  However, this role has not been fully explored in the equine.

In attempt to explore this issue, researchers conducted a trial examining changes in insulin and glucose in horses allowed access to pasture during two different eight hour periods.  Horses were allowed to graze between 7 am and 3 pm or between 12:30 pm and 10:30 pm.   In this experiment, nonstructural carbohydrate content of the grass varied from 13.5% to 19.1% from 8 am to 10 pm.  The study did find a detectable, though not large, increase in insulin, in the horses fed during the afternoon grazing period when NSC values were there highest.   While the number of horses used in the study was small, and the grazing period did overlap, this study does indicate that the concentration of insulin in the horse may be sensitive to fructan content of grasses. The horses used in this study were also not insulin resistant horses.   Insulin resistant horses  may have differed in their insulinemic response to the feeding schedules.  However, this study may offer information as to why bouts of laminitis are triggered in the insulin resistant horse exposed to the wrong type of grasses.

While we know that insulin resistant horses need to be stringently maintained on low soluble carbohydrate diets, other horses may benefit by paying attention to how we feed them.    While simply avoiding feeding grain may be an easy solution to avoiding insulin and glucose fluctuations, some horses  may require a diet higher in concentrates to meet their energy needs.  A common sense approach is to divide the horse’s meals into several smaller meals.  This is certainly an effective strategy in lowering glucose and insulin response.  However, one approach rather than running out to the barn multiple times per day to split up your horse’s meals, is to use a feeding system designed to slow down the horse’s consumption rate.  Researchers interested in this technique attempted to slow feed intake by adding grids to feed buckets, small hard balls or soaking the feed completely in water.   Using physical obstructions to feeding did prove to be successful  in increasing total feeding time, while adding water did little to alter consumption rate.  The best technique to lower insulin response was to add bocci balls to the bucket so that the horses had to move the balls around to gain access to the feed.  This idea has been elaborated to produce commercial feeding balls, which trickle out small amounts of concentrate as the horse rolls it about.  This also provides the added benefit of increasing the mental stimulation of the horse simultaneously!

An interesting new theory is that perhaps the stress we expose our horses to may contribute to elevated insulin levels.  Chronic stress does increase cortisol concentrations which may have inhibitory effects on insulin, thus creating a greater need for insulin secretion, or in essence an insulin resistant horse.  In humans, stress and high cortisol can result in insulin resistance and a shift in the deposition of fat in the body. Perhaps stress in horses may also be contributing to insulin resistance and why we see regional adiposity in these animals.  In an initial foray into stress evaluation in horses, researchers examined whether different feeding schedules resulted in an elevation in cortisol.  However, in this study feeding schedules were not a sufficient stressor to elicit any dramatic increase in cortisol.   It is interesting that equine researchers are starting to look in new directions to solve the puzzle of insulin resistance in the horse.  While at this time, the effect of stress on cortisol and thus insulin in the horse is just a theory, maybe it wouldn’t hurt us to avoid stressing our horses unnecessarily!

Much about insulin resistance and developing best practices still remains unknown.

For example, in a study in which pregnant mares were fed high concentrate diets and gained rapidly in body condition in the last trimester of pregnancy, foals from the grain fed mares were actually more sensitive to insulin and had lower resting blood glucose. This does indicate that fetal programming, or the in utero environment can have long lasting effects on the offspring, but not what management protocols may be best are unknown.  While we have learned much about insulin resistance in horses, so much remains unknown. We often have to look at studies in other species and try to extrapolate this information to our management practices.  So over all, the willingness to try new methods and incorporate new information may be our best option.  Continue to monitor grazing tightly in insulin resistant horses, get creative when feeding grain, and don’t stress your horse!

Pasture Grasses and Grazing

Posted on Leave a comment

Written By Dr. Kris Hiney

This month we will review research concerning pastures and foraging behaviors in horses. Most horsemen would agree that horses grazing at pasture represent the most natural way to feed a horse.  Certainly it represents the most economical and the least labor intensive method of feeding.  However, many owners have questions related to what or how much a horse’s is consuming when its primary source of feed is pasture grass.

This ambiguity of how much grass a horse may consume makes selecting additional concentrates or supplements more of a challenge.  In addition, many horses clearly volunteer to consume pasture grass well over their nutritional needs making regulation of body condition score very difficult.   The range of dry matter intake of horses on pasture has been reported to be as wide as 1.5 to 3.1% of their body weight in a 24 hour period. Usually young horses and lactating mares will be on the upper range of intake which would make sense due to their nutritional demands.   Mature horses are reported to typically consume 2-2.5% of their body weight in dry matter.  However, it does appear that many of our equine friends have failed to adhere to book values when given the opportunity.  A recent study looking at weight gain in pastured ponies found that on average the ponies consumed 3.8% of their body weight in dry matter, with ranges of 2.9 to 4.9%.  Others have also reported horses consuming as much as 5% of their body weight in dry matter! It is rather easy to see why horses can quite easily gain weight on pasture.

But what about horses which are only turned out for part of the day in an attempt to control feed intake? Is this an effective technique or do they simply manage to eat faster in their allotted grazing time?  In a study which attempted to determine how much a horse can consume in an 8 hour period, horses were individually assigned to small paddocks, allowed to graze for four hours, then switched to a new paddock for an additional 4 hours. The small paddocks were then harvested to determine how much the horses consumed in the given time period. In this experiment horses were able to consume 1.3% of their body weight within an 8 hour period.  In addition, their consumption rate was twice as high in the initial four hours the horses were allowed access to grazing. Therefore the horses were able to consume almost 1% of their body weight in just four hours!  Thus even limited grazing can easily result in weight gain.  From this data the authors concluded that for these particular grazing horses, only 9 hours of grazing was necessary to meet their energy needs.


While we know that good quality pasture can easily meet a horse’s maintenance requirements, does it provide additional benefits to the horse?  In a study designed to look at the effectiveness of pasture turnout in maintaining fitness, horses which has been ridden 1-2 hours per week, 5 days per week for 12 weeks were then stalled, continued to be ridden or were turned out in a large pasture.  After a 14 week period, all horses participated in a standard exercise test.  This proved that the horses allowed free access to wander through a relatively large pasture maintained their fitness compared even to the horses ridden 5 days per week.  Thus pasture turnout seems to be a reasonable solution during down time when the horse is not ridden for maintaining fitness. The pastured horses in this study traveled on average 10 km a day compared to 5 km per day in the horses which were ridden.  This study again lends support to the value of pasture turnout.

So what if we want the fitness benefit of pasture turnout without the obesity inducing over consumption?   Often the traditional answer has been to employ a grazing muzzle. In a study looking at intake rates in ponies wearing muzzles compared to their non-muzzled counterparts, muzzling resulted in an 83% decrease in overall intake. However, in just three hours, the non-muzzled ponies were able to consume 0.8% of their body weight in dry matter.  This is quite similar to the observations in the previous studies.  In addition, the same team of researchers found that the ponies “grew wise” to their limited access to grass and learned to increase their consumption rates during their restricted period.  Therefore limited time on pasture may not be as effective for foxy ponies once they learn what you are up to!  So what is our take home message?  Allowing horse’s time to graze is very beneficial, not only for their mental health, but also for their physical health.  However, in order to control intake and thus body condition score in our enthusiastic eaters, we made need to employ additional measures such as limited turnout or grazing muzzles.